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Abstract—The near-wall asymptotic behavior of the turbulent heat fluxes is analyzed and the result is used
to formulate a second-moment turbulence closure for heat flux transport near a wall. The analysis shows
that the pressure diffusion and viscous dissipation terms are of primary importance in the near-wall region
and have to be properly modeled in the transport equations. New models satisfying the near-
wall balance between viscous diffusion, viscous dissipation and pressure diffusion, and also having the
characteristics of approaching their respective conventional high-Reynolds-number models far away from
the wall are proposed. Fully-developed pipe flows with constant wall heat flux are chosen to validate the
proposed models. The calculations show that the new models are capable of capturing the near-wall
behavior very well. However, they also point to the rather immature status of the present high-Reynolds-
number heat flux models. The modeling of the pressure-scrambling term is shown to have significant effects
on the calculated heat flux and it is believed that this term is influenced by more than one turbulent time
scale. Finally, the analysis also verifies the notion that the turbulent Prandtl number is not constant near
a wall. If the turbulent Prandtl number is assumed constant, the results obtained are at variance with
measurements.

INTRODUCTION

WiTH THE advent of high-speed computers, it is widely
accepted that the isotropic diffusivity and wall func-
tion approach have to be abandoned for the cal-
culation of complex turbulent flows [1-5]. This is
especially the case for heat and mass transfer
problems, even in simple pipe flows [1]. For non-
buoyant flows, measurements (e.g. refs. [6, 7]) have
shown that turbulent heat flux in the flow direction is
two or three times larger than that normal to the wall,
even though the streamwise temperature gradient is
much smaller than its normal counterpart. For buoy-
ant flows, the eddy diffusivity assumption is even less
appropriate. Experimental measurements {8, 9] in a
vertical heated pipe flow showed a substantial change
in the turbulence structure, thus implying a reversal
of the direction of the axial turbulent heat flux (i.e.
the axial heat flux was measured upward instead of
downward as implied by the eddy diffusivity concept).
It is because of the above-mentioned reasons that
many recent contributions to turbulence modeling are
devoted to developing low-Reynolds-number tur-
bulence closures [2, 10-12]. Although much progress
has been achieved in recent years in the modeling
of the Reynolds-stress transport equations [2], the
modeling of the scalar field, on the other hand, is still
rather primitive. The reason is that turbulent stresses
are a very important input to the heat flux equations.
Therefore, model development of the latter depends
largely on the availability and correctness of the Rey-
nolds-stress model. Furthermore, heat flux transport
is influenced by more than one time scale [13]. Conse-
quently, it is more difficult to achieve closure of the
heat flux transport equations than the Reynolds-stress

equations. Besides. a shortage of reliable and rela-
tively accurate near-wall heat flux measurements also
contributes to the slow development of a near-wall
turbulence model for the heat fluxes. Comprehensive
reviews of the modeling of turbulent heat transfer can
be found in refs. {1. 14].

Due to the difficulties mentioned above. the most
common approach to turbulent heat transfer studies
is to model the normal heat flux using the classical
Boussinesq approximation. The unknown eddy dif-
fusivity for heat is calculated by prescribing a tur-
bulent Prandt! number. Realizing the limitation of
the calculation methods based on prescribed Pr,,
researchers try to improve the modeling by turning to
two-equation [15] and algebraic flux models [16] for
heat transport. Despite some successes. it is still
believed that the most reliable prediction methods are
those based on a second-moment closure. The reason
is that the turbulent interactions which generate the
Reynolds stresses and heat fluxes can be treated with
less empiricism. Moreover, for those processes which
cannot be so handled, a more rational and svstematic
set of approximations can be derived.

A first attempt to compute the turbulent heat trans-
fer process using high-Reynolds-number second-
moment closures was made by meteorological fluid
dynamicists [17-19]. On the other hand. applica-
tions of similar second-moment turbulence closures
to engineering heat transfer problems have been
attempted by Baughn er al. [20] and Launder and
Samaraweera [21]. among others. Recently. the model
was extended by Yoo and So [22] to calculate iso-
thermal, variable-density flows in a sudden-expansion
pipe. In their approach, the flow and turbulence field
were resolved by a low-Reynolds-number second-
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R radius of the pipe

Re Reynolds number, u R/v

Re,, Re, Reynolds numbers, U,D/v,
U,D /v, respectively

Re, turbulent Reynolds number, k?/ve

U,, u, ith component of the mean and
fluctuating velocity

U,u mean and fluctuating streamwise

velocities
U, bulk mean axial velocity in the pipe
U, mean axial velocity at pipe centerline
u, wall friction velocity, (t,,/p) "2
Reynolds stress tensor
turbulent heat flux vector

NOMENCLATURE

By intercept of the temperature log law V,v mean and fluctuating velocities normal
<, specific heat at constant pressure to the wall
D pipe diameter x streamwise coordinate
k turbulent kinetic energy X, ith component of the Cartesian
n, unit normal to (and with origin at) the coordinate (x, streamwise, X, normal

wall to the wall)
P, p mean and fluctuating static pressure y coordinate normal to (and with origin at)
Pr, Pr, molecular and turbulent Prandtl the wall

number bl distance normal to the wall in standard
qu wall heat flux wall coordinate, yu,/v.
r radial coordinate measured from pipe

centerline

Greek symbols

2 molecular heat diffusivity

£ dissipation rate of &

&y dissipation rate of 167

0,0 mean and fluctuating value of
temperature

©,  wall temperature
o, wall friction temperature, g, /pc,u,
©*  mean temperature in wall coordinates,

(0.,—-09)/0,
Ko slope of temperature log law
v molecular kinematic viscosity
fluid density
Ty, wall shear stress.

moment closure. The scalar flux equation was closed
by high-Reynolds-number models and the near-wall
scalar fluxes were evaluated assuming a constant tur-
bulent Schmidt number. This is one way to handle the
scalar flux transport equations for the near-wall flow,
even though the approach is known to be quite inap-
propriate for most turbulent heat and mass transfer
problems of engineering interest {1, 5,22]. The reason
for this appears to be that, so far, no suitable near-
wall second-moment closure for scalar flux transport
has been developed. This is due, in part, to a lack
of detailed near-wall scalar flux measurements and,
partially, to the unavailability of an asymptotically
correct near-wall Reynolds-stress model.

Recently, Lai and So [2] have developed a near-
wall Reynolds stress turbulence model that can cor-
rectly predict the anisotropy of the turbulent normal
stresses. The success of that model provides the
impetus to extend the approach of ref. [2] to model
turbulent heat transport near a wall. It is noted, how-
ever, that detailed and accurate experimental docu-
mentation of buoyancy-dominated wall turbulent
flow is presently not available and the modeling of
the dissipation rate of temperature variance is quite
immature, even the high-Reynolds-number version of
the modeled equation is not well developed. In view
of this, the present study will concentrate on the model-
ing of near-wall heat flux transport in the absence

of any buoyancy effect in the flow. Therefore, the
proposed near-wall heat flux model is equally valid
for any passive scalar transport. The approach taken
is similar to that outlined in ref. [2] and is based on
the limiting wall behavior of the heat flux transport
equations. This way, the modeled equation is valid
all the way to the wall and the assumptions of a
temperature wall function and a constant turbulent
Prandtl number are not required. The proposed model
is validated against fully-developed pipe flow data
with uniform heat flux prescribed at the wall [6, 7, 23,
24]. The validation of the model for more complex
flows will be carried out in the second phase of this
study after a careful examination of the high-Rey-
nolds-number models for the heat flux transport equa-
tions has been completed.

MODELING OF THE REYNOLDS-STRESS
EQUATIONS

The Reynolds-stress transport equations for an
incompressible, non-buoyant turbulent flow can be
concisely written as

C,=D,+D, +P, +0}—s¢,. 1)

Detailed expressions for the above tensor forms and
their modeling can be found in ref. [2]. Here, for
convenience, the final forms of the models are given
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and the model constants are taken to be the same
as those given in ref. [2],ie. ¢, =1.5,¢,=04, ¢, =
0.11, a* = 0.45 and f,, = exp {—(Re,/150)}. The
convective and viscous diffusive transport terms
in equation (1) are defined as C,, = Duw/Dtand D' =

in equation (1) are defined as C,; = Duu /Dt and D],
d[vouu, ,/6x,]/0x,, respectively.

A transport equation for the dissipation rate ¢ is
required to complete the closure of the hydrodynamic
flow. This equation is also taken from ref. [2] and is

listed as follows:
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This is a new approach for equation (l) for near-
wall turbulent flows. It can be seen from the yi‘O'ﬁGSﬂd
new models for ¢, and @} that as the flow moves away
from a wall, f,, quickly vanishes and the above
closure for equation (1) reduces to the high-Reynolds-
number model of Launder et al. [25]. However, Lai
and So [2] have shown that the proposed new models
not only repllcate the near-wall anisotropic turbulence
behavior accurately, but also give correct predictions
of the budgets of the Reynolids-stress near a wail com-
pared to the direct simulation results of Kim et al.
(26] and Mansour et al. [27). Therefore, the above
Reynolds-stress closure serves as an excellent basis for

extension to near-wall turbulent heat flux modeling.

ASYMPTOTIC BEHAVIOR OF THE HEAT FLUX
EQUATIONS

With the Reynolds-stress transport equations
closed as suggested above, attention can now be
focused on the extension of the approach of Lai and
So to model the turbulent heat flux transport equa-
tions near a wall. In order to correctly model the
transport process in the viscous wall layer, the limiting
behavior of the various terms in the heat flux equa-
tions has to be analysed along the lines of ref. [2]. The
heat flux transport equations can be obtained by
adding the momentum equation for , multiplied by 8
to the equation for 6 multipled by . The resultant

equation may be arranged in Cariesian tensor form
as

0 — 0 —
E(Ukung) = = a;(uluke)
Lo [0, E) e
6Xk axk “ 6xk il 5.\7,‘
— U, 8dp é8 cu,
-ukoa—.xl‘——;a—x—i- (a+V EX—I‘E/: (9)

or symbolically as

Cio=Dig+D}s+Ps+Pog2+Ph—es (10)
The meaning of the terms in equation (10) from left
to right are convective transport, turbulent diffusive
transport, viscous diffusive transport, production by
mean temnemmre omdlf-nt nrndnrhnn hv mean

shear, pressure scramblmg and molecular dissipation
of the heat fluxes.

Near a wall, the fluctuating quantities can be
expanded in terms of y as
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Table 1. Near-wall behavior of heat flux equations

Coo —Dj ~Dj, —Py =Py, €9 %
i= —(z+v)ad, (a+v)ad,
(x) o) oY) +0(») 0(») +0()) oW
=2 —(dv+2a)bod,y 2(x+v)bd,y
» oY 00" +007) oY +0(y?) ~2vbdyy
i=3 —(a+v)a.d, (a+v)ad,
2) o) o) +0(y) o) +0(y) oW
u=ay+by*+--- —_— k{___.0u® __éub
l I —uu b = cf—(u,u,i-{—uku,%'—). (12)
v = b2y2+... & 5x, 6x,
w=ayy+byy+- - This particular form is chosen because it gives the
8=dy+dyi+ (11) best overall agreement with data compared to other

where 4, = (u,v,w) and x, = (x,y,z) are substituted
for convenience, x is the flow direction and z is normal
to the x—y plane. The coefficients a,, b;, etc. are random
functions of time and x and z, and the expansion
for v starts with y* because of the incompressibility
condition. The above expansions can now be sub-
stituted into the various expressions defining the terms
in equation (10) except ®3%. Consequently, the asymp-
totic behavior of the various terms in equation (10)
except @} can be determined and the balance of equa-
tion (10) can be taken to define the asymptotic
behavior of ®%. The result, written out to the lowest
order for each term in equation (10) is given in Table
1. With the guide of these near-wall values, a new low-
Reynolds-number turbulent heat flux model can be
constructed. Thus formulated, the new heat flux
model is consistent with the near-wall Reynolds-stress
model, and together they give an asymptotically cor-
rect near-wall turbulence model for heat and mass
transfer studies.

MODELING OF THE HEAT FLUX EQUATIONS

As can be seen from Table 1, the influence of tur-
bulent diffusion is negligible near a wall. This has
actually been confirmed in the present calculation of
a fully-developed, heated pipe flow. Therefore, con-
sistent with the near-wall Reynolds-stress model [2],
the high-Reynolds-number assumption is invoked in
the modeling of the turbulent diffusion term. Various
high-Reynolds-number heat flux diffusion models are
available in the literature, e.g. Owen {28], Launder
[29] and Donaldson et al. [30], among others. A
comprehensive review of these models is given in ref.
[14]. Later, a more elaborate heat flux diffusion model
was suggested by Lumley [31]. Since the choice of a
diffusion model only has noticeable influence near the
central portion of the pipe flow, it is not a critical issue
for the near-wall flow. Therefore, the model suggested
by Launder [29] is adopted, or

versions considered in ref. [21]. The recommended
values of ¢? are 0.11 according to Launder and Sama-
raweera [21] and 0.20 according to refs. [14, 28, 29].
In the present study, 0.11 is chosen because it gives
the best correlation with fully-developed, heated pipe
flow measurements.

Contrary to the near-wall Reynolds-stress model,
the molecular diffusion term is not of the correct form.
Therefore, it also needs ‘modeling’. D}, can be
rearranged as

v ..-__?.. @+( ) ﬂ
rﬂ_axk v ] Vu,(::x’( .

o, (13)

Based on the asymptotic behavior shown in Table 1,
the right-hand side of (13) can be ‘modeled’ as

"6 i Ol (no summation for {)
éxz  om 42 oxt '

<

DY@ =V
(14)

As for the dissipation term, it is usually assumed
that turbulence is isotropic for high-Reynolds-number
flows and consequently it is zero because there is no
isotropic first-order tensor. However, for near-wall
flows, where the Reynolds number is no longer large,
the dissipation term becomes important. In fact, the
limiting values listed in Table 1 show that viscous
dissipation is of primary importance near a wall and
provides all or part of the balance to molecular
diffusion. Similar to the modeling of ¢,,. &, is modeled
in such a way that it will go to zero far away from the
wall and approach its asymptotic value near the wall.
An expression satisfying the above constraints can be
proposed as

1 N
8 = gfw,o(l + E)%[u‘9+uk9nkn,] (15)

where Pr is the molecular Prandtl number and f, 5 a
damping function taken to be exp [ — (Re,/80)?].
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The modeling of ®@% also follows the approach out-
lined in ref. [2], such that

(D;% = d)lﬂ +fw‘0(b:?.w' (16)

Inequation (16), ®,4 represents the conventional high-
Reynolds-number model of pressure-scrambling,
while the complete model satisfies the near-wall
behavior shown in Table 1 and the lowest order bal-
ance between molecular diffusion, dissipation and
pressure diffusion near a wall. It should be noted
that the @,y models proposed so far are not as well
formulated as the corresponding ®,, models because
of the inherent difficulties encountered in heat flux
modeling. Even then, three different contributions to
the ®,, term can be identified. These contributions are
due to turbulence fluctuations, mean strain and wall
reflection of the fluctuation pressure. Symbolically,
the model for ®@,4 can be written as

q).e = (Dxt). i + d‘)lﬁ. 2 +q)10.w (17)

where @5, represents the fluctuating contribution,
®,, , the mean strain contribution and ®,,,, the wall
reflection contribution. The most popular model for
®,; , is that proposed by Monin [17] and adopted by
nearly all subsequent researchers ; namely
£ —
Dy = —crpgulb (18)
k

where only one time scale (k/e) is used in spite of the
suggestion by Launder [14] that the time scale for @,y ,
should also include the effect of 0%/e,. It is worth
noting that Shih and Lumley (13} have recently
pointed out that ¢,, cannot be a universal constant
for different turbulent flows and proceeded to develop
a functional relationship between ¢, and the time
scale ratio. In spite of this, the present study will adopt
a constant value of ¢ = 3.0 as suggested in ref. [1].
The reason is that the simple model given by equation
(18) has been validated against free shear flows as well
as wall-bounded turbulent flows. On the other hand,
the more elaborate model of ref. [13] has not been
sufficiently validated for general applications. A
second reason is that the present concern is with the
near-wall asymptotic behavior rather than with the
high-Reynolds-number model. Besides, it is believed
that the present approach to construct a near-wall
turbulent heat flux model can be easily extended when
a more fundamental and suitable model for the
pressure-scrambling term is available.

It seems that no such ambiguity exists for the model-
ing of the mean strain term, ®,, ,. Among two models
in common use, the destruction of production model
[14] seems to give a more satisfactory approximation
of highly sheared flows [21] compared to the quasi-
isotropic model [29]. The destruction of production
model can be written as

—0U,
By = —CyPy2= Czoukeé}: (19)
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with the model constant ¢4, given by 0.4 as suggested
in ref. [1].

The importance of the wall reflection term was
pointed out in ref, [21]. Therefore, its influence on
near-wall turbulent heat flux modeling is also exam-
ined in the present study. As a first attempt, the model
proposed in ref. [1] is adopted, or

. e 32

Dy = —Ciou e u On.n, —s}_ (20)
where the coefficient ¢4 ,, is taken to be 0.75. Analysis
with and without the presence of this term in equation
(17) will be carried out and their results compared
with measurements. In summary, the selection of the
various models for the pressure-scrambling term fol-
lows closely those suggested in ref. [1]. The model
constants are not varied to fit the experimental data.
Instead, the present objective is to formulate a model
for @ .. so that the asymptotic behavior of @} near
a wall is correctly reproduced.

It can easily be shown that the lowest term in the
model for @, , is finite along the stream direction. On
the other hand, the lowest order term in the models
for @4, and @, is of order y" where n > 3. There-
fore, near a wall, the model for ®% ,, has to provide
terms to balance this behavior so that the final model
for ®% will come out to behave like that shown in
Table 1. A careful analysis leads to the following
model for ®% ,,, or

- —
®,‘g_w = clgiu,e— —ukenkn,.

P @D

With the model for ®% defined, a new near-wall tur-
bulence closure for equation (9) is now available. The
closure asymptotes correctly to the high-Reynolds-
number closure far away from the wall. Thus for-
mulated, the calculation can be carried out all the way
to the wall without the need to invoke empirical wall
functions and a constant Prandtl/Schmidt number.
Finally, it should be pointed out that the high-Rey-
nolds-number model for the pressure-scrambling term
can be replaced by a more appropriate model when
one becomes available and the model for @}, can be
formulated by following the procedure outlined above
for the derivation of equation (21). Thus, model (21)
may not be universal, but the methodology is indeed
very general.

GOVERNING EQUATIONS AND
COMPUTATIONAL DETAILS

The near-wall heat flux model formulated above is
used to study fully-developed, non-buoyant pipe flow
subject to a constant wall heat flux condition. Com-
parisons are made with the available measurements
of Johnk and Hanratty [23], Bremhorst and Bullock
[6, 7] and Hishida er al. {24] for air flows with Rey-
nolds number (based on pipe diameter and bulk mean
velocity) ranging from 21000 to 71 000. A cylindrical
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coordinate system is chosen to describe the flow. The
mean and fluctuating velocity and temperature are
given by (U,0,0), (1, v, w), @ and 6, respectively. Since
the governing equations for the hydrodynamic part
of the flow are already provided in ref, [2], only the
thermal energy and heat flux equations are given here.
Written in terms of the models discussed above, these
equations become

o) 1d oo
“;a( or) ce =l @

£— Tk
-1 _fw,v)clﬂzvg_clﬂ.w’i;__—rva

& — 1\e—
—fw‘agvﬂ—fw'g(l + E)Evg = 23)
VAT (L ey okor)dd
rdr v+ 2 ta dr

VA kodib) 00 e

+rdr seldr ‘“ar"“ Ox

—dU —dU

—09—— —{(1 —fus)Cis+ z:ﬂ—f-cz@vf)

k dr

f“”’(1+ )—ﬁé:o. (24)

Since the flow is axisymmetric, only the boundary
conditions at the wall and the symmetry line are
required to be specified. These are

¢y
@=0,, 6=ub=0 atr=R
de du? dv®  dw? _
“d‘;——c—l;‘——d;“=-aT—0, ur = 0 atr=0
90  duf —
oS00, =0 atr=0. (25
or dr

Note that an energy balance analysis over a control
volume between x and x+dx and the fully-developed
condition gives

de, c‘@

dx  ox

2q.
pc U,.R’

(26)

Consequently, the final governing equations become
a set of ordinary differential equations when the tem-
perature difference, (©, — @), is used as the dependent
variable. As such, the set of governing equations can

Y. G Larand R. M. C. So

be solved by the same numerical method described in
ref. [32].

According to this numerical method [32]. the set
of governing equations with appropriate boundary
conditions is solved numerically by the Newton iter-
ation scheme. The solution is carried out with the
dependent and independent variables normahzed in
the following manner: U by u,, uu, by u, & by u’/R,
(®,—0) by O, 1,0 by 4,0, and y (or R—r) by v/u,.
Therefore, the integration from r =0 10 R is now
carried out from y* = 0 to Re. Since Re is related to
Regor Re,, by Re = (u [2Uy)Re, or Re = (42U, ) Re,,
Re becomes one of the two input parameters to
the problem. The other input parameter is the molec-
ular Prandtl number Pr. The eight second-order and
one first-order ordinary differential equations are
then written into 17 first-order equations by defin-
ing new variables for d(uu/ul)/dy~. d(eRul)/dy™,
d(u,0/u.©,)/dy* and d[(©,—-©)/0,]dy". Al the
derivatives are approximated by centered-difference
gradients and the resultant finite difference. non-linear
algebraic equations are linearized using Newton's
linearization scheme. The linearized algebraic equa-
tions together with the boundary conditions can be
put into a block tri-diagonal matrix form and solved
iteratively using any matrix inversion technique. Since
the velocity and temperature fields are decoupled for
non-buoyant flows, the velocity field can be solved
first, followed by the temperature field. Iteration is
carried out until the maximum relative change of all
the variables at every grid point satisfies an accuracy
criterion of 10~ * or less. A non-uniform grid is used
to carry out the calculations. Five grid points are
specified for 0 < p* < Sand 15 grid points are located
in 5 < y* < 65. The rest of the region 65 < y* < Re
is then divided into 30-50 grid points depending on
the problem considered. In general, this grid system
is sufficient to give a convergent solution after 1500
iterations.

RESULTS AND DISCUSSION

In order to validate the present near-wall turbulent
heat flux model, several fully-developed pipe flow
measurements with constant wall heat flux boundary
conditions are chosen. These are the data of Brem-
horst and Bullock [6, 7} with an Re, = 65400; Johnk
and Hanratty [23] with three different Reynolds num-
bers given by Re,, = 24900, 49 500 and 71200; and
finally Hishida et al. [24] with an Re,, = 40000.

The calculations are carried out to assess the cor-
rectness and validity of the near-wall heat flux closure,
the appropriateness of a turbulent Prandtl number
formulation for normal heat flux and the effects of the
various high-Reynolds-number pressure-scrambling
models on the calculated results. In order to achieve
these objectives, three different sets of calculations are
performed. The first two sets are carried out using
near-wall turbulent closures for both the Reynolds-
stresses and heat fluxes. One major difference between
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e D g without wall reflection term

—== @ with wall reftection term
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Fi1G. 1. Comparison of measured and calculated mean
normalized temperatures in wall coordinates.

the first two sets of calculations is the handling of the
wall reflection term in equation (17). In one set, the
wall reflection term is included in the model, while the
other set omits the contribution of this term. The third
set relies on the near-wall Reynolds-stress closure to
calculate w,u,, while v0 is obtained from
e PR
Pr, 0y
with v, = ¢, f,k*/e, f,=1-—exp(~0.0115y*) and
Pr, = 0.9 specified. A comparison of the three differ-
ent sets of calculations with measurements will allow
the relative strengths and weaknesses of the three
different approaches of modeling turbulent heat trans-
port to be assessed.

The most important comparison is with the nor-
malized temperature profile plotted in wall coor-
dinates. This comparison, therefore, is first made with
the data of Johnk and Hanratty [23] for three different
Reynolds numbers as shown in Fig. 1. In order to
explore the influence of the wall reflection term, two
calculations are presented for each Reynolds number ;
one with and one without @, .. The results show that
the thermal viscous sublayer is not affected by the wall
reflection term while the rest of the flow region is very
much dependent on the model for ®,,. It can be
concluded that the wall reflection term (20) is
unnecessary, at least when equations (18) and (19) are
adopted for the pressure-scrambling model. More will
be said about this wall reflection term when com-
parisons of other quantities with measurements are
discussed.

It is clear that the predictions without the wall
reflection term in equation (17) agree quite well with
measurements, particularly for the thermal viscous
sublayer, the buffer layer and the log law region. As

@7
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a result, the slope and intercept of the temperature log
law are very well reproduced by the calculations. The
temperature log law is given by

Ot =k, 'Iny* +B,. 28)
From the results shown in Fig. 1, (x4, B,) are deter-
mined to be (0.47,4.69), (0.51,4.87) and (0.55,5.37),
respectively, for Re, = 24900, 49500 and 71200.
These values are in agreement with measurements and
reaffirm the dependence of x, and B, on Reynolds
number. However, some discrepancy exists in the cen-
tral part of the pipe. It is believed that the discrepancy
comes about as a result of the incorrect high-Rey-
nolds-number modeling of the pressure-scrambling
and diffusion terms.

Besides the mean temperature field, the closure
should also be assessed for its ability to predict the
heat fluxes, 0 and v0. It is unfortunate that accurate
experimental data for heat fluxes is not as well docu-
mented as Reynolds stresses. Therefore, the present
comparison has to be carried out with the data of
Bremhorst and Bullock [6, 7], which is not known for
its accuracy, and with the data of Hishida e al. [24],
which provides a very detailed measurement of the
normal heat flux near a wall. The measurements of
refs. [6, 7] are not exactly buoyant-free and the flow
is affected by buoyancy as a result of the horizontal
arrangement of the test rig and heat addition. In Figs.
2-4, the mean temperature, shear stress and normal
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stresses are compared. It is noted that, in spite of
the good agreement achieved in the prediction of the
normal stresses (Fig. 4), the shear stress comparison
shows a substantial and large discrepancy (Fig. 3). In
view of this, the shear stress measurement of Laufer
[33] at Re, = 50000 is also plotted in Fig. 3 for com-
parison. Lai and So [2] have shown that shear stress
prediction is not much affected by the Reynolds num-
ber and excellent agreement with measurements is
achieved using their near-wall Reynolds-stress
closure. The discrepancy shown in Fig. 3 should there-
fore be interpreted as measurement distortion due to
poor spatial resolution, as pointed out in refs. [6, 7].
Furthermore, Bremhorst and Bullock [6, 7] found that
their measured shear stress does not agree with that
calculated from the measured mean velocity profile,
while the latter agrees well with the present calcu-
lation. Finally, it should be pointed out that a com-
parison of the linear plot of the normalized mean
temperature shows that the prediction with wall
reflection present is in better agreement with measure-
ments (Fig. 2). This seems to contradict the results
shown in Fig. 1. The reason is that the predicted ©,
is incorrect. More will be said about this in the next
paragraph.

The comparisons of the calculated and measured
turbulent heat fluxes are shown in Fig. 5. Interestingly,
these plots substantiate the result shown in Fig. 2;
namely, that the pressure-scrambling model with the
wall reflection term included correlates much better
with measurements than the model with the wall
reflection term absent. This may be part of the reason

Y. G. Lat and R. M. C. So

— D g without wall reflection term

~~—— @ g with woll reflection term

O Measurements of Bremhorst
and Bullock [6,7]

I-r/R

F1G. 5. Comparison of measured and calculated turbulent
heat fluxes.

why this wall reflection term was introduced in the
past. In fact, ‘better’ agreement in Fig. 2 is due to
the normalization by (©,,—®,) and this ensures that
(0,-0)/(0,—0,) varies from 0 to 1 in the flow
region. As for the streamwise turbulent heat flux, the
discrepancy between the model calculation with the
wall reflection term absent and the measurement could
be attributed to measurement errors generated by flow
distortion due to buoyancy, and also partly to the
simple one-time-scale model of pressure-scrambling.
Shih and Lumley [13] argued that the pressure-scram-
bling process is influenced by more than one time
scale and proceeded to propose modifications to the
pressure-scrambling model. Similar arguments and
proposals have also been made by Elghobashi and
Launder {34]. However, most of these modifications
are concerned only with homogeneous turbulent flows
and are completely ad hoc [35]. Since these modi-
fications have not been thoroughly tested, the present
study will not attempt to further explore the effects of
pressure-scrambling modeling. When new and more
sophisticated models are available, the present ap-
proach can again be used to derive an asymptoti-
cally correct near-wall turbulent heat flux model.
Since near-wall measurements of the normal heat
flux are recently available [24], this quantity is com-
pared in Fig. 6. This comparison lends credence to the
argument that the wall reflection term is not necessary
in the model for ®%. In the absence of the wall reflec-
tion term, excellent agreement is obtained between the
calculated and measured mean temperature profiles
as well as the normal heat flux in the near-wall region
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F1G. 6. Comparison of measured and calculated normal heat
fluxes in the near-wall region.

(Figs. 1 and 6). Further evidence that the wall reflec-
tion term in @f% is inappropriate can be obtained from
the prediction of —u8/v8 (Fig. 7). In the central por-
tion of the pipe, this ratio is approximately 1.33 for the
calculation without the wall reflection term present,
while it is about 1.7 and not quite constant for the
case with the wall reflection term present. The analysis
in ref. [14] for two-dimensional thin shear flow showed
that the measurements of Champagne et al. [36] give
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FiG. 7. Calculated heat flux ratio.
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a value of 1.27. Therefore, the —uf/v8 data support
the neglect of the wall reflection term in the modeling
of ®F%.

The calculated turbulent Prandtl numbers for three
different Reynolds numbers are shown in Fig. 8. It is
observed that Pr, is approximately constant for the
most part of the pipe. However, it increases steeply
and far exceeds unity as the wall is approached. This
behavior is consistent with the flat-plate boundary-
layer measurements of Johnson [37] and, for the
first time, correctly demonstrates that the turbulent
Prandtl number is not constant near a wall. Therefore,
any heat transfer model that assumes a constant Pr,
is not likely to be valid, even for simple pipe flows like
the one considered here. Further evidence in support
of this conclusion can be gleaned from a comparison
of the present model calculations and the calculations
using a constant Pr, but with a near-wall turbulence
model for the Reynolds stresses. The ®* and 0
results are shown in Figs. 1 and 6, respectively.
Clearly, the constant Pr, results are in poor agreement
with measurements. The velocity field, however, is
not affected by this assumption and the results are
identical to those obtained from the present model.

Finally, the importance of modeling ¢, in the near-
wall region is illustrated in Figs. 9 and 10. In these
figures, the budgets of the heat fluxes, uf and v0, are
plotted. As expected, — D}, is balanced by ¢, in the
very near-wall region, y* < 5 (Figs. 9 and 10). If ¢ is
assumed to be zero in view of the isotropic turbulence
argument, then the heat flux equations are out of
balance near a wall and the calculated «f and 18 values
are likely to be incorrect. The correct modeling of ®%
in the near-wall region is also of importance to 6 and
v6 (Figs. 9 and 10). Close to the wall, y* <10, ©%,
and &,y are providing the balance to Py, and Py, in
the v budget (Fig. 10). If ®%,, is taken to be zero,
the budget of v0 near the wall will be out of balance.
In other words, the calculated v6 with ®% given by ®,,
alone will be incorrect. On the other hand, ¢, and
Dj}, vanish quickly as the flow moves away from the
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wall. At y* = 40, the budgets in u,0 reduce to a bal-
ance between production and ®%. Convection of 1,0
is of course zero for a fully-developed pipe flow. For
this particular flow, turbulent diffusion of 4,0 is essen-
tially negligible beyond y* = 20, and is quite insig-
nificant even for y* < 20. As a result, the model (12)
proposed for D}, is more than satisfactory since it

satisfies the near-wall behavior given in Table 1.

CONCLUSIONS

The flow and heat transfer behavior near a wall is
analysed by expanding the velocity components and
temperature in terms of the coordinate normal to
the wall. Consequently, the near-wall asymptotic
behavior of all the terms except @ in the heat flux

008

004

equations is known and the heat flux equations can
be used to assess the near-wall asymptotic behavior
of ®%. Based on this analysis, near-wall models are
formulated for the molecular diffusion, dissipation
and pressure-scrambling terms to give a new near-
wall closure for the heat flux equations. All these
models, except the molecular diffusion model, have
the property of correctly approaching their respective
high-Reynolds-number models far away from the
wall; thus the conventional high-Reynolds-number
closure of the heat flux transport equations can be
recovered. The new near-wall heat flux closure is used
in conjunction with a near-wall Reynolds-stress
closure to calculate fully-developed pipe flows with
uniform heat addition. Comparisons with experimental
data show that the calculations are in excellent agree-
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ment with near-wall measurements, especially the nor-
mal heat flux. On the other hand, calculations based
on a near-wall Reynolds-stress closure and a constant
turbulent Prandtl number formulation for the normal
heat flux are in poor agreement with measurements.
This shows that the turbulent Prandtl number con-
cept is not suitable for heat transfer calculations, even
for fully-developed pipe flows.

The closure results show that the turbulent Prandti
number is not constant in the near-wall region. In-
stead, the turbulent Prandtl number increases steeply
as the wall is approached. The present study also
lends credence to the speculation that heat flux trans-
port is more complicated than momentum transport
and is more likely to be influenced by two or more time
scales instead of one. Consequently, all conventional
high-Reynolds-number models for the dissipation and
pressure-scrambling terms in the heat flux equations
are not very appropriate. Heat transfer modeling can
be improved by formulating more appropriate dissi-
pation and pressure-scrambling models. Once these
models are available, the present methodology can
again be applied to derive an asymptotically correct
near-wall closure for the heat flux equations.
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MODELISATION DES FLUX THERMIQUE TURBULENTS PRES DE LA PAROI

Résumé—Le comportement asymptotique prés de la paroi des flux thermiques turbulents est analysé et le
résultat est utilisé pour formuler une fermeture de second ordre pour le transfert thermique prés de la
paroi. L'analyse montre que les termes de la diffusion de pression et de la dissipation visqueuse sont de
premiére importance dans la région pariétale et qu'ils doivent étre correctement modélisés dans les équations
de transport. On propose de nouveaux modéles qui satisfont le bilan pariétal exact entre diffusion visqueuse,
dissipation visqueuse et diffusion de pression et ayant aussi des caractéristiques qui approchent les modéles
a nombre de Reynolds élevé loin de la paroi. Des écoulements pleinement établis en canal avec flux
thermique constant a la paroi sont choisis pour valider les modéles proposés. Les calculs montrent que les
nouveaux modéles sont capables de bien représenter le comportement proche de la paroi. Néanmoins, ils
dégagent 1'état plutét immature des modéles actuels des flux thermiques & grand nombre de Reynolds. La
modélisation du terme de diffusion de pression montre qu'il a des effets sensibles sur le flux thermique
calculé et on pense que ce terme est influencé par plus d’une échelle turbulente de temps. Enfin I'analyse
vérifie aussi 'idée que le nombre de Prandtl turbulent n'est pas constant prés de la paroi. Si le nombre de
Prandtl turbulent est supposé constant les résultats obtenus ne s’accordent pas avec les mesures.

MODELL ZUR BESCHREIBUNG DER WANDNAHEN VORGANGE BEI
TURBULENTEM WARMETRANSPORT

Zusammenfassung—Das wandnahe asymptotische Verhalten bei turbulentem Wirmetransport wird analy-
siert. Das Ergebnis wird zur Formulierung einer SchlieBbedingung fiir die Turbulenz beim Wirmetransport
nahe einer Wand benutzt. Dabei zeigt sich. daB die Terme fir Druck und Dissipation im wandnahen
Gebiet von besonders groBer Bedeutung sind und in den Transportgleichungen sorgfdltig einbezogen
werden miissen. Es werden neue Modelle vorgeschlagen, die in Wandnihe das Gleichgewicht zwischen
Impulstransport, Dissipation und Druck erfiillen und sich auBerdem in groBer Entfernung von der
Wand an die entsprechenden herkdmmlichen Modelle fiir groBe Reynolds-Zahlen anschlieBen. Volistindig
entwickelte Rohrstrémungen mit aufgeprigter Wirmestromdichte an der Wand werden zur Validierung
des vorgeschlagenen Modells verwendet. Diese Berechnungen zeigen, daB die neuen Modelle das Verhalten
nahe an der Wand sehr gut wiedergeben. Sie zeigen jedoch auch, daB Wirmetransportmodelle bei hoher
Reynolds-Zah! ziemlich unausgereift sind. SchlieBlich bestitigt die Untersuchung, daB die turbulente
Prandtl-Zah! nahe der Wand nicht konstant ist. Wenn die turbulente Prandtl-Zahl als konstant
angenommen wird, weichen die Ergebnisse von entsprechenden MeBergebnissen ab.

MOJEJIMPOBAHHUE TYPBVYJIEHTHBIX TEINJIOBBIX MOTOKOB BBJIM3H CTEUKH

Annorauns—Hccnenyercsi acHMNTOTHYECKOE MOBENCHHE TYPOYJCHTHBIX TEILIOBBIX AOTOKOB BOTA3N
CTEHKH, K MOJYYCHHbiE PE3yNBTATHl HCMOAL3YIOTCR WUIA GOPMY/IHDPOBKH TEMIOBOH MOJAENH BTOPOro
NOPAAKa, NPeAHA3HAYCHHON 1A MOICTHPOBAHHA NECPEHOCA TenAa BOIM3N CTCHKH. AHATH3 NOKa3biBaeT,
YTO CIaraeMble, yYHTHIBAIOLIME A(dYIHIO NABICHHS H MOJICKYIAPHYIO AHCCHNALMIO, ABAIOTCA Hanbo-
Nee BaXHBIMH B YPaBHEHHSAX [UIA MOTOKA TCIUIA B NPHCTEHHOH! OGMACTH U MOITOMY OHH NOSIKHBI GbITH
alleKBATHO CMOJCTHPOBAHB B YKa3aHHBIX ypaBReHHAX. [IpennaraioTcs HOBbIEC MOMIENH, YAOBIETBOPAIO-
ume ycnoemio Gananca Mexay MonekynspHoi mupdysuelt, “muccunauneh™ u anddysue# gasmenns
B6IH3U CTEHKH, B NPHGAMKAIOWACCH NO ANCKBATHOCTH K OGLUCNPHHATHIM MOIENAM uis Gonbuuux 3ua-
yennit TypGynenTHuIx yucen PefiHo/bACa NpH GOMBLILMX PACCTOSHUAX OT CTeHkH. [Lnsg npoBepkn Opeo-
XEHHBIX MOJeNeit PacCMOTDPEHBl MONHOCTHIO PA3BHTHIC TEYEHHA B TPYGax ¢ NMOCTOAMHBIM TEILIOBBIM
NOTOKOM Ha CTeHKe. PacdeTsl NOXa3uBaloT, YTO HOBLIE MOIEIH OYEHb XOPOLIO ONHCHLIBAIOT TEILIOBBIC
noToxy B6INIK CTEHKH. B TO e BpeMs OHH YXa3biBalOT Ha HCAOCTATOYHYIO 8[1eKBATHOCTS Moneset s
BLICOKHX 3HadeHui#t TypGyaentHoro uucna Peifwonsaca. IoxaszaHo, 4TO MOACIHPOBAHHC CaracMoro,
YYMTHIBAIOWIErO AHddYIHIO NABIICHHS, OKA3LIBACT CYLIECTBEHHOC BJIMAHAE HAa PAacYETHOC 3HAYCHHC Ter-
JIOBOTO MOTOKA M NPEANOJAracTcs, YTO OH 5aBUCHT GoJee yeM OT oQHOro BpeMeHHoro Macuuraba Typ-
6YAGHTHOCTH. AHAJIH3 TaKke MOATBEPXIAET MPEANONONEHHE O TOM, WTO 3Hadenue Typbyienrsoro
yncna TpaHaTns BOGIM3W CTEHKH HE ABIAETCA NOCTOAHHBIM. Ecnu Pr npuHUMaeTcs KOHCTaHTOMH, To
NOJIy4EHHBIE PE3Y/IBTATH PACYCTa PACXOIATCS C IKCACPHMEHTAIbHLIMH JaHHBIMH.



