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Abstract-The near-wail asymptotic behavior of the turbulent heat fluxes is analyzed and the result is used 
to formulate a second-moment turbulence closure for heat flux transport near a wall. The analysis sho\vs 
that the pressure diffusion and viscous dissipation terms are of primary importance in the near-wall region 
and have to be properly modeled in the transport equations. New models satisfying the near- 
wall balance between viscous diffusion, viscous dissipation and pressure diffusion, and also having the 
characteristics of approaching their respective conventional high-Reynolds-number models far away from 
the wail are proposed. Fully-developed pipe flows with constant \vall heat flux are chosen to validate the 
proposed models. The calculations show that the new models are capable of capturing the near-uall 
behavior very well. However, they also point to the rather immature status of the present high-Reynolds- 
number heat flux models. The modeling of the pressure-scrambling term is shown to have significant effects 
on the calculated heat flux and it is believed that this term is influenced by more than one turbulent time 
scale. Finally, the analysis also verifies the notion that the turbulent Prandtl number is not constant near 
a wall. If the turbulent Prandtl number is assumed constant, the results obtained are at variance uith 

measurements. 

INTRODUCTION 

WITH THE advent of high-speed computers, it is widely 
accepted that the isotropic diffusivity and wall func- 
tion approach have to be abandoned for the cal- 
culation of complex turbulent flows [l-5]. This is 
especial1.y the case for heat and mass transfer 
problems, even in simple pipe flows [I]. For non- 
buoyant flows, measurements (e.g. refs. [6, 71) have 
shown that turbulent heat flux in the flow direction is 
two or three times larger than that normal to the wall, 
even though the streamwise temperature gradient is 
much smaller than its normal counterpart. For buoy- 
ant flows, the eddy diffusivity assumption is even less 
appropriate. Experimental measurements [8, 91 in a 
vertical heated pipe flow showed a substantial change 
in the turbulence structure, thus implying a reversal 
of the direction of the axial turbulent heat flux (i.e. 
the axial heat flux was measured upward instead of 
downward as implied by the eddy diffusivity concept). 
It is because of the above-mentioned reasons that 
many recent contributions to turbulence modeling are 
devoted to developing low-Reynolds-number tur- 
bulence closures [2, 10-121. Although much progress 
has been achieved in recent years in the modeling 
of the Reynolds-stress transport equations [2], the 
modeling of the scalar field, on the other hand, is still 
rather primitive. The reason is that turbulent stresses 
are a very important input to the heat flux equations. 
Therefore, model development of the latter depends 
largely on the availability and correctness of the Rey- 
nolds-stress model. Furthermore, heat flux transport 
is influenced by more than one time scale [ 131. Conse- 
quently, it is more difficult to achieve closure of the 
heat flux transport equations than the Reynolds-stress 

equations. Besides. a shortage of reliable and rela- 
tively accurate near-wall heat flux measurements also 
contributes to the slow development of a near-wall 
turbulence model for the heat fluxes. Comprehensive 
reviews of the modeling of turbulent heat transfer can 
be found in refs. [I. 141. 

Due to the difficulties mentioned above. the most 
common approach to turbulent heat transfer studies 
is to model the normal heat flux using the classical 
Boussinesq approximation. The unknown eddy dif- 
fusivity for heat is calculated by prescribing a tur- 
bulent Prandtl number. Realizing the limitation of 
the calculation methods based on prescribed Pr,, 
researchers try to improve the modeling by turning to 
two-equation [ 151 and algebraic flux models [ 161 for 
heat transport. Despite some successes. it is still 
believed that the most reliable prediction methods are 
those based on a second-moment closure. The reason 
is that the turbulent interactions which generate the 
Reynolds stresses and heat fluxes can be treated with 
less empiricism. Moreover, for those processes which 
cannot be so handled, a more rational and systematic 
set of approximations can be derived. 

A first attempt to compute the turbulent heat trans- 
fer process using high-Reynolds-number second- 
moment closures was made by meteorological fluid 
dynamicists [l7-191. On the other hand. applica- 
tions of similar second-moment turbulence closures 
to engineering heat transfer problems have been 
attempted by Baughn et al. [20] and Launder and 
Samaraweera [2 I]. among others. Recently. the model 
was extended by Yoo and So [22] to calculate iso- 
thermal, variable-density flows in a sudden-expansion 
pipe. In their approach, the flow and turbulence field 
were resolved by a low-Reynolds-number second- 
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NOMENCLATURE 

4 intercept of the temperature log law 

CP 
specific heat at constant pressure 

D pipe diameter 
k turbulent kinetic energy 

n, unit normal to (and with origin at) the 
wall 

P, p mean and fluctuating static pressure 
Pr, Pr, molecular and turbulent Prandtl 

number 

4W wall heat flux 
r radial coordinate measured from pipe 

centerline 
R radius of the pipe 
Re Reynolds number, u,R/v 

%,, ReO Reynolds numbers, U,Dlv, 
UoD/v, respectively 

Re, turbulent Reynolds number, k*/vc 
CJ,, u, ith component of the mean and 

fluctuating velocity 
U, u mean and fluctuating streamwise 

velocities 

U, bulk mean axial velocity in the pipe 

UO mean axial velocity at pipe centerline 

u, wall friction velocity, (r,/p) “’ - 
W, Reynolds stress tensor 
$I turbulent heat flux vector 

v, c mean and fluctuating velocities normal 
to the wall 

I streamwise coordinate 

.y, ith component of the Cartesian 
coordinate (x, streamwise, x2 normal 
to the wall) 

Y coordinate normal to (and with origin at) 
the wall 

.+ J distance normal to the wall in standard 
wall coordinate, yu,/v. 

Greek symbols 
s( molecular heat diffusivity 
E dissipation rate of k 

Et) dissipation rate of +p 
0,8 mean and fluctuating value of 

temperature 

0, wall temperature 

0, wall friction temperature, qu Ipc,u, 
0’ mean temperature in wall coordinates, 

(0, -0)/O, 

&I slope of temperature log lau 
V molecular kinematic viscosity 

P fluid density 

=W wall shear stress. 

moment closure. The scalar flux equation was closed 
by high-Reynolds-number models and the near-wall 
scalar fluxes were evaluated assuming a constant tur- 
bulent Schmidt number. This is one way to handle the 
scalar flux transport equations for the near-wall flow, 
even though the approach is known to be quite inap- 
propriate for most turbulent heat and mass transfer 
problems of engineering interest [ 1,5,22]. The reason 
for this appears to be that, so far, no suitable near- 
wall second-moment closure for scalar flux transport 
has been developed. This is due, in part, to a lack 
of detailed near-wall scalar flux measurements and, 
partially, to the unavailability of an asymptotically 
correct near-wall Reynolds-stress model. 

Recently, Lai and So [2] have developed a near- 
wall Reynolds stress turbulence model that can cor- 
rectly predict the anisotropy of the turbulent normal 
stresses. The success of that model provides the 
impetus to extend the approach of ref. [2] to model 
turbulent heat transport near a wall. It is noted, how- 
ever, that detailed and accurate experimental docu- 
mentation of buoyancy-dominated wall turbulent 
flow is presently not available and the modeling of 
the dissipation rate of temperature variance is quite 
immature, even the high-Reynolds-number version of 
the modeled equation is not well developed. In view 
of this, the present study will concentrate on the model- 
ing of near-wall heat flux transport in the absence 

of any buoyancy effect in the flow. Therefore, the 
proposed near-wall heat flux model is equally valid 
for any passive scalar transport. The approach taken 
is similar to that outlined in ref. [2] and is based on 
the limiting wall behavior of the heat flux transport 
equations. This way, the modeled equation is valid 
all the way to the wall and the assumptions of a 
temperature wall function and a constant turbulent 
Prandtl number are not required. The proposed model 
is validated against fully-developed pipe flow data 
with uniform heat flux prescribed at the wall [6, 7.23, 
241. The validation of the model for more complex 
flows will be carried out in the second phase of this 
study after a careful examination of the high-Rey- 
nolds-number models for the heat flux transport equa- 
tions has been completed. 

MODELING OF THE REYNOLDS-STRESS 

EQUATIONS 

The Reynolds-stress transport equations for an 
incompressible, non-buoyant turbulent flow can be 
concisely written as 

C,, = D:,+D:,+P;,+@,::-+ (1) 

Detailed expressions for the above tensor forms and 
their modeling can be found in ref. [2]. Here, for 
convenience, the final forms of the models are given 



Near-wall modeling of turbulent heat fluxes 1431 

as 

-du,ut _dut _du,u, 
U’Ul~ +u,ul ax, +“kulF]l 

(2) 

&_ - 

E,j = f&(1 -f+,,+fw,, j$+j + ui"knkn, 

+i+iikt$+nln,uturnkn,l/[l f ~GZwk/2kl (3) 

a:: = @,, + @,,.wfw. I (4) 

CI, ,, = -c, ;(i+ ‘5&k) 

+@*( p,, - $&k) (6) 

where 

(W 

0) 

and the model constants are taken to be the same 
as those given in ref. [2], i.e. c, = 1.5, c2 = 0.4, c, = 
0.11, a* = 0.45 and fw., = exp { - (Re,/l50)*}. The 
convective and viscous diffusive transport terms 
in equation (1) are defined as C,, = DG/Dt and Db = 
~[v&$axk]/axk, respectively. 

A transport equation for the dissipation rate E is 
required to complete the closure of the hydrodynamic 
flow. This equation is also taken from ref. [2] and is 
listed as follows : 

+c,l(lfOfy2)~~kk-Ct2~~+S (8) 

with 

and 

E&E_?!+ 
Y2 

The model constants are specified by ref. [2] as 
c, = 0.15, c,, = 1.35 and ca2 = 1.8, and the damping 
functions are defined as 

fl- 1-$exp{-($J}, /-2=exp{-($J}. 

This is a new approach for equation (1) for near- 
wall turbulent flows. It can be seen from the proposed 
new models for E,] and @; that as the flow moves away 
from a wall, fw., quickly vanishes and the above 
closure for equation (1) reduces to the high-Reynolds- 
number model of Launder et al. 1251. However, Lai 
and So [2] have shown that the proposed new models 
not only replicate the near-wall anisotropic turbulence 
behavior accurately, but also give correct predictions 
of the budgets of the Reynolds-stress near a wall com- 
pared to the direct simulation results of Kim et al. 

[26] and Mansour et al. [27J Therefore, the above 
Reynolds-stress closure serves as an excellent basis for 
extension to near-wall turbulent heat flux modeling. 

ASYMPTOTIC BEHAVIOR OF THE HEAT FLUX 

EQUATIONS 

With the Reynolds-stress transport equations 
closed as suggested above, attention can now be 
focused on the extension of the approach of Lai and 
So to model the turbulent heat flux transport equa- 
tions near a wall. In order to correctly model the 
transport process in the viscous wall layer, the limiting 
behavior of the various terms in the heat flux equa- 
tions has to be analysed along the lines of ref. [2]. The 
heat flux transport equations can be obtained by 
adding the momentum equation for u, multiplied by 0 
to the equation for 6 multipled by u,. The resultant 
equation may be arranged in Cartesian tensor form 
as 

&k;;s, = --&(u,uk@ 
k -k 

-_ 

1 _m 
-U,Ukdx 

k 

se h, 

----(a+v);-T- 
cx, C.yk 

or symbolically as 

(9) 

ci, = D:s+D~~+PIB,I+Pi8.2+a):B-EIB. (10) 

The meaning of the terms in equation (10) from left 
to right are convective transport, turbulent diffusive 
transport, viscous diffusive transport, production by 
mean temperature gradient, production by mean 
shear, pressure scrambling and molecular dissipation 
of the heat fluxes. 

Near a wall, the fluctuating quantities can be 
expanded in terms of y as 
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Table I. Near-wall behavior of heat flux equations 

i=l 

(xl 
1=2 

(Y) 
i=3 

(4 

ce 

WY’) 

my41 

WY’) 

-Db 

O(Y’) 

O(Y? 

WY’) 

-Dl. 

-(z+v)a,d, 
+0(Y) 

- (4v +Za)b*d,y 
+o(Y*) 

-(K+v)a,d, 

+0(Y) 

-p,e.,-PeJ.2 

0 0’) 

O(Y”) 

WY’) 

40 

(z + v)a,d, 
+0(Y) 

2(K + V)m) 

+wYz) 

(K + vk,d, 

+0(Y) 

Q:o 

WY) 

-2vb,d,y 

O(Y) 

u = a,y+b,y2+... 

0 = d,y+dzy2+... (11) 

where u, = (u, u, w) and x, = (x,y, z) are substituted 
for convenience, x is the flow direction and z is normal 
to the x-y plane. The coefficients a,, bi, etc. are random 
functions of time and x and z, and the expansion 
for v starts with y* because of the incompressibility 
condition. The above expansions can now be sub- 
stituted into the various expressions defining the terms 
in equation (10) except @z. Consequently, the asymp- 
totic behavior of the various terms in equation (10) 
except @T, can be determined and the balance of equa- 
tion (10) can be taken to define the asymptotic 
behavior of 0;. The result, written out to the lowest 
order for each term in equation (10) is given in Table 
1. With the guide of these near-wall values, a new low- 
Reynolds-number turbulent heat flux model can be 
constructed. Thus formulated, the new heat flux 
model is consistent with the near-wall Reynolds-stress 
model, and together they give an asymptotically cor- 
rect near-wall turbulence model for heat and mass 
transfer studies. 

MODELING OF THE HEAT FLUX EQUATIONS 

As can be seen from Table 1, the influence of tur- 
bulent diffusion is negligible near a wall. This has 
actually been confirmed in the present calculation of 
a fully-developed, heated pipe flow. Therefore, con- 
sistent with the near-wall Reynolds-stress model [2], 
the high-Reynolds-number assumption is invoked in 
the modeling of the turbulent diffusion term. Various 
high-Reynolds-number heat flux diffusion models are 
available in the literature, e.g. Owen [28], Launder 
1291 and Donaldson et al. [30], among others. A 
comprehensive review of these models is given in ref. 
[14]. Later, a more elaborate heat flux diffusion model 
was suggested by Lumley [31]. Since the choice of a 
diffusion model only has noticeable influence near the 
central portion of the pipe flow, it is not a critical issue 
for the near-wall flow. Therefore, the model suggested 
by Launder [29] is adopted, or 

. (12) 

This particular form is chosen because it gives the 
best overall agreement with data compared to other 
versions considered in ref. [21]. The recommended 
values of cf are 0.11 according to Launder and Sama- 
raweera [21] and 0.20 according to refs. [14, 28, 291. 
In the present study, 0. I1 is chosen because it gives 
the best correlation with fully-developed, heated pipe 
flow measurements. 

Contrary to the near-wall Reynolds-stress model, 
the molecular diffusion term is not of the correct form. 
Therefore, it also needs ‘modeling’. D,‘B can be 
rearranged as 

- 

D;e=$ 
. 

k 

v$f +(u-v)u,g 
k -1 

(13) 
-k 

Based on the asymptotic behavior shown in Table 1, 
the right-hand side of (13) can be ‘modeled’ as 

- 

DIyB = v 
d2U0 u-v a53 
-L+- 
?.Xj 

---!- (no summation for i). 
n,+2 ax; 

(14) 

As for the dissipation term, it is usually assumed 
that turbulence is isotropic for high-Reynolds-number 
flows and consequently it is zero because there is no 
isotropic first-order tensor. However, for near-wall 
flows, where the Reynolds number is no longer large, 
the dissipation term becomes important. In fact, the 
limiting values listed in Table 1 show that viscous 
dissipation is of primary importance near a wall and 
provides all or part of the balance to molecular 
diffusion. Similar to the modeling of E,, . E,~ is modeled 
in such a way that it will go to zero far away from the 
wall and approach its asymptotic value near the wall. 
An expression satisfying the above constraints can be 
proposed as 

%e 

where Pr is the molecular Prandtl number and fw.@ a 
damping function taken to be exp [- (Re,,%0)2]. 
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The modeling of @$ also follows the approach out- with the model constant cze given by 0.4 as suggested 
lined in ref. [2], such that in ref. [l]. 

@:e = @,e +.&3%V (16) 

In equation (16), ale represents the conventional high- 
Reynolds-number model of pressure-scrambling, 
while the complete model satisfies the near-wall 
behavior shown in Table 1 and the lowest order bal- 
ance between molecular diffusion, dissipation and 
pressure diffusion near a wall. It should be noted 
that the Ole models proposed so far are not as well 
formulated as the corresponding @,, models because 
of the inherent difficulties encountered in heat flux 
modeling. Even then, three different contributions to 
the @,,, term can be identified. These contributions are 
due to turbulence fluctuations, mean strain and wall 
reflection of the fluctuation pressure. Symbolically, 
the model for Qls can be written as 

The importance of the wall reflection term was 
pointed out in ref. [21]. Therefore, its influence on 
near-wall turbulent heat flux modeling is also exam- 
ined in the present study. As a first attempt, the model 
proposed in ref. [ 1] is adopted, or 

4 
E- k”2 

,e.w = -CIe.w - u,en,n, - 
k &Y 

(20) 

@,tl = Q’rs. I + %. 2 +@,e,w (17) 

where a,,.,. , represents the fluctuating contribution, 
O,e,z the mean strain contribution and a,,, the wall 
reflection contribution. The most popular model for 
0,@., is that proposed by Monin [ 171 and adopted by 
nearly all subsequent researchers ; namely 

where the coefficient c I,+. is taken to be 0.75. Analysis 
with and without the presence of this term in equation 
(17) will be carried out and their results compared 
with measurements. In summary, the selection of the 
various models for the pressure-scrambling term fol- 
lows closely those suggested in ref. [I]. The model 
constants are not varied to fit the experimental data. 
Instead, the present objective is to formulate a model 

for @:S.w so that the asymptotic behavior of @$ near 
a wall is correctly reproduced. 

CD r&I = -cl.9 Eue 
k ’ (18) 

It can easily be shown that the lowest term in the 
model for ale,, is finite along the stream direction, On 
the other hand, the lowest order term in the models 

for @,e.z and @,e.w is of order f where n 2 3. There- 
fore, near a wall, the model for a& has to provide 
terms to balance this behavior so that the final model 
for Co2 will come out to behave like that shown in 
Table 1. A careful analysis leads to the following 
model for @,*,,, or 

where only one time scale (k/e) is used in spite of the 
suggestion by Launder [14] that the time scale for 0,@, , 
should also include the effect of F/Q. It is worth 
noting that Shih and Lumley [13] have recently 
pointed out that c,,, cannot be a universal constant 
for different turbulent flows and proceeded to develop 
a functional relationship between c,@ and the time 
scale ratio. In spite of this, the present study will adopt 
a constant value of c ,8 = 3.0 as suggested in ref. [l]. 
The reason is that the simple model given by equation 
(18) has been validated against free shear flows as well 
as wall-bounded turbulent flows. On the other hand, 
the more elaborate model of ref. [13] has not been 
sufficiently validated for general applications. A 
second reason is that the present concern is with the 
near-wall asymptotic behavior rather than with the 
high-Reynolds-number model. Besides, it is believed 
that the present approach to construct a near-wall 
turbulent heat flux model can be easily extended when 
a more fundamental and suitable model for the 
pressure-scrambling term is available. 

(21) 

With the model for 05 defined, a new near-wall tur- 
bulence closure for equation (9) is now available. The 
closure asymptotes correctly to the high-Reynolds- 
number closure far away from the wall. Thus for- 
mulated, the calculation can be carried out all the way 
to the wall without the need to invoke empirical wall 
functions and a constant Prandtl/Schmidt number. 
Finally, it should be pointed out that the high-Rey- 
nolds-number model for the pressure-scrambling term 
can be replaced by a more appropriate model when 
one becomes available and the model for Q& can be 
formulated by following the procedure outlined above 
for the derivation of equation (21). Thus, model (21) 
may not be universal, but the methodology is indeed 
very general. 

It seems that no such ambiguity exists for the model- 
ing of the mean strain term, @,e.z. Among two models 
in common use, the destruction of production model 
[14] seems to give a more satisfactory approximation 
of highly sheared flows [21] compared to the quasi- 
isotropic model (291. The destruction of production 
model can be written as 

GOVERNING EQUATIONS AND 

COMPUTATIONAL DETAILS 

Q 
-au, 

r.9.2 = -c*eP,o.* = f*dd--- ax, (19) 

The near-wall heat flux model formulated above is 
used to study fully-developed, non-buoyant pipe flow 
subject to a constant wall heat flux condition. Com- 
parisons are made with the available measurements 
of Johnk and Hanratty [23], Bremhorst and Bullock 
[6, 7] and Hishida et al. [24] for air flows with Rey- 
nolds number (based on pipe diameter and bulk mean 
velocity) ranging from 2 1000 to 7 1000. A cylindrical 
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coordinate system is chosen to describe the flow. The 
mean and fluctuating velocity and temperature are 
given by (U, 0, 0), (u, c, TV), 0 and 6, respectively. Since 
the governing equations for the hydrodynamic part 
of the flow are already provided in ref. [Z], only the 
thermal energy and heat flux equations are given here. 
Written in terms of the models discussed above, these 
equations become 

33 
--UT& (22) 

Id k 

r;iF 
“+ cI--y +2c@_;+ 

3 =E 

(24) 

Since the flow is axisymmet~c, only the boundary 
conditions at the wail and the symmetry line are 
required to be specified. These are 

U=;;I=~=;;;I=m:=O, 

EC& ( > i_Jk 2 
+ 

atr=R 

O=O,, s=a=O atr=R 

de dz d;;r d7 -=-=-=:__O 
dr dr dr dr ’ 

UC==0 atr-0 

a@ d;;e -_= Y- 
cir dr 

0, G8=0 atr=O. (2% 

Note that an energy balance analysis over a control 
volume between .v and .r + d.r and the fully-developed 
condition gives 

(26) 

Consequently, the final governing equations become 
a set of ordinary differential equations when the tem- 
perature difference, (0, - O), is used as the dependent 
variable. As such, the set of governing equations can 

be solved by the same numerical method described in 
ref. [32]. 

According to this numerical method [32]. the set 
of governing equations with appropriate boundary 
conditions is solved numerically by the Newton iter- 
ation scheme. The solution is carried out with the 
dependent and independent variables normalized in - 
the following manner: lJ by u,, u,u, by uz, E by u,)iR, 

(0,-O) by O,, D by u,O, and y (or R-r) by v/u,. 
Therefore, the integration from r = 0 to R is now 
carried out from y+ = 0 to Re. Since Re is related to 
Re, or Re,,, by Re = (u~J2U~)Re~ or Re = (uJ2U,,,)Re,, 
Re becomes one of the two input parameters to 
the problem. The other input parameter is the molec- 
ular Prandtl number Pr. The eight second-order and 
one first-order ordinary differential equations are 
then written into 17 first-order equations by defin- - 
ing new variables for d(rr,r~,/tr~)/d~“. d(ER,‘r~~)8’d,ri, 
d(u,8ju,O,)/d~+ and d[(O,-0)/O,] dy-. All the 
derivatives are approximated by centered-difference 
gradients and the resultant finite difference, non-linear 
algebraic equations are linearized using Newton’s 
linearization scheme. The linearized algebraic equa- 
tions together with the boundary conditions can be 
put into a block tri-diagonal matrix form and solved 
iteratively using any matrix inversion technique. Since 
the velocity and temperature fields are decoupled for 
non-buoyant flows, the velocity field can be solved 
first, followed by the temperature tieId. Iteration is 
carried out until the maximum relative change of all 
the variables at every grid point satisfies an accuracy 
criterion of IO-’ or less. A non-uniform grid is used 
to carry out the calculations. Five grid points are 
specified for 0 < y+ < 5 and 15 grid points are located 
in 5 < y+ < 65. The rest of the region 65 < y+ < Re 

is then divided into 3%50 grid points depending on 
the problem considered. In general, this grid system 
is sufficient to give a convergent solution after 1500 
iterations. 

RESULTS AND DISCUSSION 

in order to validate the present near-wall turbulent 
heat flux model, several fully-developed pipe flow 
measurements with constant wall heat flux boundary 
conditions are chosen. These are the data of Brem- 
horst and Bullock [6,7] with an Reo = 69400; Johnk 
and Hanratty [23] with three different Reynoids num- 
bers given by Re, = 24900, 49 500 and 71200; and 
finally Hishida ef al. [24] with an Re,,, = 40000. 

The calculations are carried out to assess the cor- 
rectness and validity of the near-wall heat flux closure, 
the appropriateness of a turbulent Prandtl number 
fo~ulation for normal heat flux and the effects of the 
various high-Reynolds-num~r pressure-scrambling 
models on the calculated results. In order to achieve 
these objectives, three different sets of calculations are 
performed. The first two sets are carried out using 
near-wail turbulent closures for both the Reynolds- 
stresses and heat fluxes. One major difference between 
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- 9,e wlthcwt wall rrtlectmn term 

200 

100 IO' IO' IO' 
Y+ 

FIG. I. Comparison of measured and calculated mean 
normalized temperatures in wall coordinates. 

the first two sets of calculations is the handling of the 
wall reflection term in equation (17). In one set, the 
wall reflection term is included in the model, while the 
other set omits the contribution of this term. The third 
set relies on the near-wall Reynolds-stress closure to 
calculate G, while 3 is obtained from 

v cm -;e=‘_ 
pr, aY 

(27) 

with v, = c,,_@‘ls, f, = 1-exp(-O.O115y+) and 
Pr, = 0.9 specified. A comparison of the three differ- 
ent sets of calculations with measurements will allow 
the relative strengths and weaknesses of the three 
different approaches of modeling turbulent heat trans- 
port to be assessed. 

The most important comparison is with the nor- 
malized temperature profile plotted in wall coor- 
dinates. This comparison, therefore, is first made with 
the data of Johnk and Hanratty [23] for three different 
Reynolds numbers as shown in Fig. 1. In order to 
explore the influence of the wall reflection term, two 
calculations are presented for each Reynolds number ; 
one with and one without @,B.W. The results show that 
the thermal viscous sublayer is not affected by the wall 
reflection term while the rest of the flow region is very 
much dependent on the model for @,+.. It can be 
concluded that the wall reflection term (20) is 
unnecessary, at least when equations (18) and (19) are 
adopted for the pressure-scrambling model. More will 
be said about this wall reflection term when com- 
parisons of other quantities with measurements are 
discussed. 

It is clear that the predictions without the wall 
retlection term in equation (17) agree quite well with 
measurements, particularly for the thermal viscous 
sublayer, the buffer layer and the log law region. As 

a result, the slope and intercept of the temperature log 
law are very well reproduced by the calculations. The 
temperature log law is given by 

o+ = Kg’ lny++&. (28) 

From the results shown in Fig. 1, (K#.&) are deter- 
mined to be (0.47,4.69), (0.51,4.87) and (0.55,5.37), 
respectively, for Re, = 24900, 49 500 and 71200. 
These values are in agreement with measurements and 
reaffirm the dependence of tiO and & on Reynolds 
number. However, some discrepancy exists in the cen- 
tral part of the pipe. It is believed that the discrepancy 
comes about as a result of the incorrect high-Rey- 
nolds-number modeling of the pressure-scrambling 
and diffusion terms. 

Besides the mean temperature field, the closure 
should also be assessed for its ability to predict the 

heat fluxes, 2 and a. It is unfortunate that accurate 
experimental data for heat fluxes is not as well docu- 
mented as Reynolds stresses. Therefore, the present 
comparison has to be carried out with the data of 
Bremhorst and Bullock [6, 71, which is not known for 
its accuracy, and with the data of Hishida et al. [24], 
which provides a very detailed measurement of the 
normal heat flux near a wall. The measurements of 
refs. [6, 71 are not exactly buoyant-free and the flow 
is affected by buoyancy as a result of the horizontal 
arrangement of the test rig and heat addition. In Figs. 

the mean temperature, shear stress and normal 

12 
r 

cl 

I -r/R 

2. Comparison of measured and calculated mean 
normalized temperatures. 

FIG. 3. Comparison of measured and calculated shear 
stresses. 
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FIG. 4. Comparison of measured and calculated normal FIG. 5. Comparison of measured and calculated turbulent 
stresses. heat fluxes. 

stresses are compared. It is noted that, in spite of 
the good agreement achieved in the prediction of the 
normal stresses (Fig. 4), the shear stress comparison 
shows a substantial and large discrepancy (Fig. 3). In 
view of this, the shear stress measurement of Laufer 
[33] at Re, = 50000 is also plotted in Fig. 3 for com- 
parison. Lai and So [2] have shown that shear stress 
prediction is not much affected by the Reynolds num- 
ber and excellent agreement with measurements is 
achieved using their near-wall Reynolds-stress 
closure. The discrepancy shown in Fig. 3 should there- 
fore be interpreted as measurement distortion due to 
poor spatial resolution, as pointed out in refs. [6, 71. 
Furthermore, Bremhorst and Bullock [6,7] found that 
their measured shear stress does not agree with that 
calculated from the measured mean velocity profile, 
while the latter agrees well with the present calcu- 
lation. Finally, it should be pointed out that a com- 
parison of the linear plot of the normalized mean 
temperature shows that the prediction with wall 
reflection present is in better agreement with measure- 
ments (Fig. 2). This seems to contradict the results 
shown in Fig. 1. The reason is that the predicted 0, 
is incorrect. More will be said about this in the next 
paragraph. 

The comparisons of the calculated and measured 
turbulent heat fluxes are shown in Fig. 5. Interestingly, 
these plots substantiate the result shown in Fig. 2; 
namely, that the pressure-scrambling model with the 
wall reflection term included correlates much better 
with measurements than the model with the wall 
reflection term absent. This may be part of the reason 

0 ,@ wIthout wall reflectnn term 

0,s wth wall reflection term 

Measurammts of Bremhorst 

and Bullock C6.71 

02 04 06 06 IO 

I-r/R 

why this wall reflection term was introduced in the 
past. In fact, ‘better’ agreement in Fig. 2 is due to 
the normalization by (0, - 0,) and this ensures that 
(0,-0)/(0,-O,) varies from 0 to I in the flow 
region. As for the streamwise turbulent heat flux, the 
discrepancy between the model calculation with the 
wall reflection term absent and the measurement could 
be attributed to measurement errors generated by flow 
distortion due to buoyancy, and also partly to the 
simple one-time-scale model of pressure-scrambling. 
Shih and Lumley [ 131 argued that the pressure-scram- 
bling process is influenced by more than one time 
scale and proceeded to propose modifications to the 
pressure-scrambling model. Similar arguments and 
proposals have also been made by Elghobashi and 
Launder [34]. However, most of these modifications 
are concerned only with homogeneous turbulent flows 
and are completely ad hoc [35]. Since these modi- 
fications have not been thoroughly tested, the present 
study will not attempt to further explore the effects of 
pressure-scrambling modeling. When new and more 
sophisticated models are available, the present ap- 
proach can again be used to derive an asymptoti- 
cally correct near-wall turbulent heat flux model. 

Since near-wall measurements of the normal heat 
flux are recently available [24], this quantity is com- 
pared in Fig. 6. This comparison lends credence to the 
argument that the wall reflection term is not necessary 
in the model for 02. In the absence of the wall reflec- 
tion term, excellent agreement is obtained between the 
calculated and measured mean temperature profiles 
as well as the normal heat flux in the near-wall region 
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FIG. 6. Comparison of measured and calculated normal heat 
fluxes in the near-wall region. 

(Figs. 1 and 6). Further evidence that the wall reflec- 
tion term in cD:B is inappropriate can be obtained from -- 
the prediction of -u~/uI~ (Fig. 7). In the central por- 
tion of the pipe, this ratio is approximately 1.33 for the 
calculation without the wall reflection term present, 
while it is about 1.7 and not quite constant for the 
case with the wall reflection term present. The analysis 
in ref. [ 141 for two-dimensional thin shear flow showed 
that the measurements of Champagne ef al. [36] give 

- Q),e wthout wall reflactlon term 

--- @,s with wall reflectIon term 

60 1 

L I I I I 
0 

I 
02 04 06 09 I .o 

I-r/R 

FIG. 7. Calculated heat flux ratio. 
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FIG. 8. Behavior of the calculated turbulent Prandtl number. 

-- 
a value of 1.27. Therefore, the -r&/c6 data support 
the neglect of the wall reflection term in the modeling 
of #$. 

The calculated turbulent Prandtl numbers for three 
different Reynolds numbers are shown in Fig. 8. It is 
observed that Pr, is approximately constant for the 
most part of the pipe. However, it increases steeply 
and far exceeds unity as the wall is approached. This 
behavior is consistent with the flat-plate boundary- 
layer measurements of Johnson [371 and, for the 
first time, correctly demonstrates that the turbulent 
Prandtl number is not constant near a wall. Therefore, 
any heat transfer model that assumes a constant Pr, 
is not likely to be valid, even for simple pipe flows like 
the one considered here. Further evidence in support 
of this conclusion can be gleaned from a comparison 
of the present model calculations and the calculations 
using a constant Pr, but with a near-wall turbulence 
model for the Reynolds stresses. The 0’ and 2% 
results are shown in Figs. 1 and 6, respectively. 
Clearly, the constant Pr, results are in poor agreement 
with measurements. The velocity field, however, is 
not affected by this assumption and the results are 
identical to those obtained from the present model. 

Finally, the importance of modeling E,@ in the near- 
wall region is illustrated in Figs. 9 and 10. In these 
figures, the budgets of the heat fluxes, z and a, are 
plotted. As expected, - DL is balanced by E,* in the 
very near-wall region, y’ < 5 (Figs. 9 and 10). If sle is 
assumed to be zero in view of the isotropic turbulence 
argument, then the heat flux equations are out of 
balance near a wall and the calculated zand avalues 
are likely to be incorrect. The correct modeling of 02 
in the near-wall region is also of importance to r%and 
2 (Figs. 9 and 10). Close to the wall, y+ < 10, cO$, 
andLze are providing the balance to Pze,, and PzB.2 in 
the v6 budgetpig. 10). If c&, is taken to be zero, 
the budget of vt? near the wall will be out of balance. 
In other words, the calculated z with U$, given by ale 
alone will be incorrect. On the other hand, a,@ and 
Dye vanish quickly as the tlow moves away from the 
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FIG. 9. Near-wall modeled behavior of the terms in the budgets of 2. 

wall. At y+ = 40, the budgets in q reduce to a bal- 
ance between production and 0;. Convection of g 
is of course zero for a fully-developed pipe flow. For 
this particular flow, turbulent diffusion of qis essen- 
tially negligible beyond y+ = 20, and is quite insig- 
nificant even for y+ c 20. As a result, the model (12) 
proposed for D:# is more than satisfactory since it 
satisfies the near-wall behavior given in Table 1. 

CONCLUSIONS 

The flow and heat transfer behavior near a wall is 
analysed by expanding the velocity components and 
temperature in terms of the coordinate normal to 
the wall. Consequently, the near-wall asymptotic 
behavior of all the terms except cP$ in the heat flux 

equations is known and the heat flux equations can 
be used to assess the near-wall asymptotic behavior 
of @f. Based on this analysis, near-wall models are 
formulated for the molecular diffusion, dissipation 
and pressure-scrambling terms to give a new near- 
wall closure for the heat flux equations. All these 
models, except the molecular diffusion model, have 
the property of correctly approaching their respective 
high-Reynolds-number models far away from the 
wall ; thus the conventional high-Reynolds-number 
closure of the heat flux transport equations can be 
recovered. The new near-wall heat flux closure is used 
in conjunction with a near-wall Reynolds-stress 
closure to calculate fully-developed pipe flows with 
uniform heat addition. Comparisons with experimental 
data show that the calculations are in excellent agree- 

Pressure-scrambhg 

D Dlsslpotlon 
. Molecular d,ttuslon 

A Turbulent dlttuslon 

0 

Y+ 

FIG. 10. Near-wall modeled behavior of the terms in the budgets of 3. 
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ment with near-wall measurements, especially the nor- 
mal heat flux. On the other hand, calculations based 
on a near-wall Reynolds-stress closure and a constant 
turbulent Prandtl number formulation for the normal 
heat flux are in poor agreement with measurements. 
This shows that the turbulent Prandtl number con- 
cept is not suitable for heat transfer calculations, even 
for fully-developed pipe flows. 

The closure results show that the turbulent Prandtl 
number is not constant in the near-wall region. In- 
stead, the turbulent Prandtl number increases steeply 
as the wall is approached. The present study also 
lends credence to the speculation that heat flux trans- 
port is more complicated than momentum transport 
and is more likely to be influenced by two or more time 
scales instead of one. Consequently, all conventional 

high-Reynolds-number models for the dissipation and 

pressure-scrambling terms in the heat flux equations 

are not very appropriate. Heat transfer modeling can 
be improved by formulating more appropriate dissi- 
pation and pressure-scrambling models. Once these 
models are available, the present methodology can 
again be applied to derive an asymptotically correct 
near-wall closure for the heat flux equations. 
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MODELISATION DES FLUX THERMIQUE TURBULENTS PRES DE LA PAR01 

Resume--Le comportement asymptotique pres de la paroi des flux thermiques turbulents est analyse et le 
resultat est utilise pour formuler une fermeture de second ordre pour le transfert thermique pres de la 
paroi. L’analyse montre que les termes de la diPiusion de pression et de la dissipation visqueuse sont de 
premi$re importance dans la region parietale et qu’ils doivent etre correctement modelises dans les equations 
de transport. On propose de nouveaux modtles qui satisfont le bilan parietal exact entre diffusion visqueuse, 
dissipation visqueuse et diffusion de pression et ayant aussi des caracttristiques qui approchent les modeles 
a nombrc de Reynolds eleve loin de la paroi. Des ecoulements pleinement etablis en canal avec flux 
thermtque constant a la paroi sont choisis pour valider les modeles proposes. Les calculs montrent que les 
nouveaux modeles sont capables de bien rep&enter le comportement proche de la paroi. Neanmoins, ils 
dcgagent I.&tat plutot immature des modeles actuels des flux thermiques a grand nombre de Reynolds. La 
modelisation du termc dc dtffusion de pression montre qu’il a des effets sensibles sur le flux thermique 
calculC et on pense que ce terme est influence par plus d’une echelle turbulente de temps. Enfin l’analyse 
verifie aussi l’idee que le nombre de Prandtl turbulent n’est pas constant pres de la paroi. Si le nombre de 

Prandtl turbulent est suppose constant les resultats obtenus ne s’accordent pas avec les mesures. 

MODELL ZUR BESCHREIBUNG DER WANDNAHEN VORGANGE BE1 
TURBULENTEM WARMETRANSPORT 

Zusammenfassung-Das wandnahe asymptottsche Verhalten bei turbulentem Wlrmetransport wird analy- 
sicrt. Das Ergebnis wird zur Formulierung einer SchlieObedingung fiir die Turbulenz beim Warmetransport 
nahe einer Wand benutzt. Dabei zeigt sich. da8 die Terme fur Druck und Dissipation im wandnahen 
Gebiet von besonders grol3er Bedeutung sind und in den Transportgteichungen sorgfaltig einbezogen 
werden miissen. Es werden neue Modelle vorgeschlagen, die in Wandnahe das Gleichgewicht zwischen 
Impulstransport. Dissipation und Druck erfiillen und sich auDerdem in groDer Entfemung von der 
Wand an dte entsprechenden herkiimmlichen Modelle fiir grol3e Reynolds-Zahlen anschlie8en. Vollstlndig 
cntwickelte Rohrrtromungen mit aufgepragter Warmestromdichte an der Wand werden zur Validierung 
des vorgeschlagenen Modells verwendet. Diese Berechnungen zeigen, da8 die neuen Modelle das Verhalten 
nahe an der Wand sehr gut wiedergeben. Sie zeigen jedoch such, daB Warmetransportmodelle bei hoher 
Reynolds-Zahl ziemlich unausgereift sind. SchlieRlich bestltigt die Untersuchung, da0 die turbulente 
Prandtl-Zahl nahe der Wand nicht konstant ist. Wenn die turbulente Prandtl-Zahl als konstant 

angenommen wird. weichen die Ergebnisse von entsprechenden MeDergebnissen ab. 

MO~EJIWPOBAHME TYPSYJIEHTHbIX TEl-lJIOBbIX HOTOKOB B&-Hi311 CTEMKM 

Amto~mnm-HccnenyeTcn acsmnrrormmcroe nonenemte ryp6ynenrttbrx rennosarx IIOTOYOB B~JTSUH 
cxetncH, H nonyveHHble pe3ynbTand Hcnonb3yloTcn anK $opMynHpoBKH Tennoeoti Monenx Broporo 

nopnnna,npe~HaueHHofi&IIn bfoneJIEpOBaHHR IIcpe~WTeWla B~JIH~H cTeHLn.A~anH3 noKa3bIBaeT, 

9~0cnaraeMble,yv~~blealou~e~~)SJHH)~BneHHn H Monerynnptryro nHccHnawn0, rmnnrorcrr mui60- 
nee Ba;YHblMH B~BHCHHKX~K I'lOTOKa TellJla B IlpHCTeHHOfi o6nacru H l'IO3TOMyOHHRO.WHbl6bITb 
alleYBaTH CMO~eJtHpOBaHbl B yKiuaiU%IX mBHeHHKX.npeAllaraIOTCK HOBble MOIleJlH, yLlOBJIeTBOpSlO- 
usfe ycnoslno 6ana~ca Mexny Monerynnpfrol mr@&3Hei& “mccmawieii” x rulMy3ifeA nasnesmn 
e6nnsn CTeHKH, H npH6muarotumcn II0 IUICKMTHOC’TN I; 06lU’XlpHHJTTbIM MOilenKM l$JlK 6OnbUIHX 3Ha- 

veHHR ryp6ynenrrmrx mmen Peltronbnca npii 6onburHx paccronHHnx 0~ CTeHw. &rn npoeepra npemo- 
Z%eHHbIX MOneJIefi PaCCMOTpeHbl IIOnHOCTblO pa3BHTbIe TeYeHHK B Tpj’6aX C IIOCTOJlHHblM TeMOBblM 
,,OTOKOM Ha CTeHKe. PaC'IeTbI nOKa3blBalOT,YTO HOBble MOlIenH O'IeHb XOpOUlO OIIHCbIBaEOT TeILJfOBble 

,lOTOKH B6JIH3H CTCHKII. B TO~eBPeMllOHlryra3~THaHenocraTOqHyloapeK~THocraMOnureeanK 
B~ICOKHX srraqemrit ryp6ynerrrnoro micna Peihsonbnca. noralano, ST0 MonenHpOnanHe CnaraeMoro, 

ywrbmalourero &@y3mo naKneHsfn,oxa3brBaeT cyueCTBeHHoe BnHnHHe Ha pacwmme 3HaqeHHe Ten- 
nOBOr IlOTOKa H IIpe~OnaraeTcn, WO OH LaBXCHT 6Onm WM OT OmOl-0 BPeMeHHOrO acacurrada Typ 
6ynenmocm. AH~JIU~ raKxe noirrBepauraeT npennonoxeHHe 0 TOM, -0 3ifaqetHne T@yJleHTHOrO 
qHCna npaFUJTJln B6nH3H CTeHKR He XBnReTCR llOCTORHHblM. %JIH Pr llpHHHMaeTCK KOHCTIHTOR, TO 


